Comparative Study of Sequential Pattern Mining Models
نویسندگان
چکیده
The process of finding interesting, novel, and useful patterns from data is now commonly known as Knowledge Discovery and Data mining (KDD). In this paper, we examine closely the problem of mining sequential patterns and propose a general evaluation method to assess the quality of the mined results. We propose four evaluation criteria, namely (1) recoverability, (2) the number of spurious patterns (3) the number of redundant patterns, and (4) the degree of extraneous items in the patterns, to quantitatively assess the quality of the mined results from a wide variety of synthetic datasets with varying randomness and noise levels. Recoverability, a new metric, measures how much of the underlying trend has been detected. Such an evaluation method provides a basis for comparing different models for sequential pattern mining. Furthermore, such evaluation is essential in understanding the performance of approximate solutions. In this paper, the method is employed to conduct a detailed comparison of the traditional frequent sequential pattern model with an alternative approximate pattern model based on sequence alignment. We demonstrate that the alternative approach is able to better recover the underlying patterns with little confounding information under all circumstances we examined, including those where the frequent sequential pattern model fails.
منابع مشابه
Sequential Mining: Patterns and Algorithms Analysis
This paper presents and analysis the common existing sequential pattern mining algorithms. It presents a classifying study of sequential pattern-mining algorithms into five extensive classes. First, on the basis of Apriori-based algorithm, second on Breadth First Search-based strategy, third on Depth First Search strategy, fourth on sequential closed-pattern algorithm and five on the basis of i...
متن کاملComparative Study of Various Sequential Pattern Mining Algorithms
In Sequential pattern mining represents an important class of data mining problems with wide range of applications. It is one of the very challenging problems because it deals with the careful scanning of a combinatorially large number of possible subsequence patterns. Broadly sequential pattern ming algorithms can be classified into three types namely Apriori based approaches, Pattern growth a...
متن کاملComparative Study of Web Mining Algorithms for Web Page Prediction in Recommendation System
This paper shows the comparative study and implementation of recommendation system based on two different web mining algorithms. The proposed system is designed for web page prediction in recommendation system as well as it is helpful for the study of web mining algorithm to get frequent sequential access pattern from web log file of web server. The experiments are conducted based on the implem...
متن کاملData Mining in Sequential Pattern for Asynchronous Periodic Patterns
Data mining is becoming an increasingly important tool to transform enormous data into useful information. Mining periodic patterns in temporal dataset plays an important role in data mining and knowledge discovery tasks. This paper presents, design and development of software for sequential pattern mining for asynchronous periodic patterns in temporal database. Comparative study of various alg...
متن کاملSequential Pattern Mining : Survey and Current Research Challenges
185 Abstract— The concept of sequence Data Mining was first introduced by Rakesh Agrawal and Ramakrishnan Srikant in the year 1995. The problem was first introduced in the context of market analysis. It aimed to retrieve frequent patterns in the sequences of products purchased by customers through time ordered transactions. Later on its application was extended to complex applications like tele...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005